Архив за день24 июня, 2020

Chemical Recycling Europe Position on EU Waste Policy

Although the “10 priorities to transform EU Waste Policy” developed by various European Union (EU) NGOs and associations points at ambitious directions for the waste policy that Chemical Recycling Europe generally supports, restrictions mentioned in Priority 9 represent missed opportunities to improve the current waste and recycling system, leading to some inconsistencies between priorities. We would like to provide some clarification on chemical recycling to refine Priority 9.

Chemical Recycling Europe supports many of the priorities mentioned in the NGO’s joint statement:

Priority to favour waste prevention and reduction as well as reuse in full alignment with the EU Waste Hierarchy.

Priority to prevent shipping of plastic waste to non-EU countries, especially if they do not have the necessary infrastructure, to stimulate recycling and recycling infrastructure in the EU and to avoid pollution elsewhere.

Most Advanced Technology to Measure Plastic Polymer Biodegradation

Priority to encourage the creation of plastic products that follows the principle of the waste hierarchy. This implies support for eco-modulation and measures to incentivize increased amount of recycled content in plastic products, and more generally, in a circular design. The purpose of which is to stimulate the demand for recycled content and circular materials. On this basis, we support an Extended Producer Responsibility (EPR) expanded to other groups beyond packaging and WEEE.

Priority to clarify the definition and framework for chemical recycling.

We would, however, like to bring some elements of clarification related to Priority 9 regarding chemical recycling:

Symphony Wins Battle of Words with Compostable Plastics Industry

  • I. Chemical Recycling is circular by definition: Chemical recycling represents an overarching category composed of different technologies that aims to close the material loop by converting plastic waste currently not recycled into high-quality products.

These recycling techniques (sometimes described as Upcycling or Advanced Recycling) reflects the essence of what circularity is by enabling the direct replacement of virgin material with its identical quality and properties.

They, for instance, enable the inclusion of recycled content in food-grade applications. These various technologies convert polymeric waste in different value-added materials like monomers, naphtha, syngas, waxes and etc.

Chemical recycling takes on a clear circular approach as the definition of chemical recycling excludes energy recovery: “Chemical Recycling is defined as any reprocessing technology that directly affects either the formulation of the polymeric waste or the polymer itself and converts them into chemical substances and/or products whether for the original or other purposes, excluding energy recovery”.

  • II. Input characteristics should not be restricted: The input of chemical recycling has very little value compared to the input of mechanical recycling. Therefore, chemical recycling input naturally falls into a category that tends to be contaminated and/or degraded.

We, however, fail to see the reason for restricting chemical recycling to contaminated and degraded plastics.

Some plastics are more complex and some do not represent a stream economically viable for mechanical recyclers and therefore this restriction prevents the possibility for these plastics to be recycled. Opening broader plastic waste streams to chemical recycling would enable more plastics, that are currently not being recycled, to be recycled and would therefore complement current efforts made by mechanical recyclers.

  • III. Input origin should not be restricted: Saying that the input should not come from a separate collection, would mean that chemical recycling would not be able to capture the rejects from mechanical recyclers, which represent a significant amount of plastic waste.

In addition, mechanical recycling is also not able to recycle some separate collected waste streams e.g. EPS, LDPE,… Therefore, we ask what the best recycling alternative would be for those separate collected waste streams rather than chemical recycling?

On the other hand, in addition to new plastics, the output of chemical recycling can be used in the production of a variety of materials which might bring more value than plastics and therefore the output should not be limited to new plastics.

Furthermore, unwanted plastic waste of a larger variety can be transformed into alternative oils, waxes, and solvents.

This also results in a reduction of crude oil as a raw material and creation of necessary and useful materials for various industries.

  • IV. Restrictions lead to inconsistencies with Priority 10: Restricting the input characteristics and origins for chemical recycling would be inconsistent with Priority 10 phasing out waste incineration.

Given that the plastic waste going to chemical recycling would otherwise be sent to Energy-from-Waste, the restrictions above imply that you implicitly favour this waste going to Energy-from-Waste.

This represents a missed opportunity to recycle the plastic waste coming from the rejections of mechanical recycling (and therefore from separate collection) or a waste stream technically or economically difficult to recycle by mechanical recyclers.

  • V. Chemical recycling targets a new demand: Chemical recycling specifically targets the demand for virgin-quality recycled content that mechanical recycling can fulfil only for PET and HDPE for a few cycles under strict conditions (for now, and we hope that innovation will enable more!). It targets a circular product and demand that currently cannot be fulfilled.

Praj and Lygos Partner on Lactic Acid Technology

As part of this MOU, Lygos will provide its proprietary yeast platform to Praj for jointly developing into various solutions for commercial applications.

Praj has already developed and offers bacterial fermentation technology to produce lactic acid and downstream products from sugary feedstock.

Lactic acid is also used in food and beverages, in cleaning agents as well as in the electronic industry.

Most Advanced Technology to Measure Plastic Polymer Biodegradation

The global lactic acid market size is estimated at around $1 Bln USD (2019).

Lygos will provide its innovative and high-performance technology, LP1 Ultra™ Yeast Platform and Carbon Sequestration Superhighway™, which is well suited to produce acid compounds.

Praj will assemble other segments of technology backed up by its expertise in process development, optimization, design scale-up and will further integrate lactic acid as a source material in to making Bioplastic, called as Polylactic Acid (PLA).

Symphony Wins Battle of Words with Compostable Plastics Industry

Demand for PLA acid is ~ 200, 000 tons/year, which is expected to increase substantially in the near future. PLA is an appropriate solution to replace single use plastics and reduce the burden on the waste disposal system.

Due to its unique characteristics, PLA offers an improved replacement for many applications. Rising consumer awareness with respect to the need for recyclability, green packaging, and sustainability is driving significant demand globally.

Unlike conventional plastic, PLA does not take decades to degrade, and as such, reduces adverse environmental impact.

Pramod Chaudhari, Executive Chairman of Praj, said,

“True to its vision to make the world a better place, Praj continues to deploy advanced technologies to produce sustainable products. Our focus over the past three decades on environment, energy and agri-process industry complements global efforts to mitigate climate change and is in tune with global circular bioeconomy. We are happy to work with Lygos to co-develop their advanced yeast platform to produce highly valuable organic acid to offer our customers a better opportunity while supporting rural economy. I am confident that this association will open opportunities for both of us in the global renewable chemicals & materials industry.”

Eric Steen, CEO of Lygos, stated

“We are pleased to partner with Praj and the Praj Matrix team whose deep expertise spans commercialization, engineering, and scale-up, construction and operation of similar industrial processes. This is an exciting time where the world’s demand for sustainable, safe products not produced from toxic petroleum continues to grow. We believe our LP1 Ultra™ platform will complement the Praj team’s goal in the lactic acid marketplace. We look forward to accelerating the technology commercialization through this partnership,”

Both companies will jointly pursue identified commercial opportunities globally to establish a leading position in compostable polymers.